Uniform estimates for the parabolic Ginzburg–Landau equation
نویسندگان
چکیده
منابع مشابه
Obstructions to Uniform Estimates for Solutions to the ∂-equation
We show that if, for every bounded ∂-closed (0, 1)-form f , a pseudoconvex domain Ω admits a solution to ∂u = f that is continuous up to the boundary and has uniform estimates in terms of ‖f‖∞, then each p ∈ ∂Ω must necessarily admit a peak function in the class A(Ω) := O(Ω) ∩ C(Ω). We use this fact to examine some geometrical obstructions to uniform estimates for the ∂-equation.
متن کاملAleksandrov-type Estimates for a Parabolic Monge-ampère Equation
A classical result of Aleksandrov allows us to estimate the size of a convex function u at a point x in a bounded domain Ω in terms of the distance from x to the boundary of Ω if ∫ Ω detD 2u dx < ∞. This estimate plays a prominent role in the existence and regularity theory of the Monge-Ampère equation. Jerison proved an extension of Aleksandrov’s result that provides a similar estimate, in som...
متن کاملGradient estimates for a nonlinear parabolic equation under Ricci flow
Let (M,g(t)), 0 ≤ t ≤ T , be a n-dimensional complete noncompact manifold, n ≥ 2, with bounded curvatures and metric g(t) evolving by the Ricci flow ∂gij ∂t = −2Rij . We will extend the result of L. Ma and Y. Yang and prove a local gradient estimate for positive solutions of the nonlinear parabolic equation ∂u ∂t = ∆u − au log u − qu where a ∈ R is a constant and q is a smooth function on M × [...
متن کاملGradient Estimates for a Nonlinear Parabolic Equation on Riemannian Manifolds
Let (M, g) be a complete noncompact Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions to a simple nonlinear parabolic equation ∂u ∂t = ∆u+ au log u+ bu on M × [0,+∞), where a, b are two real constants. This equation is closely related to the gradient Ricci soliton. We extend the result of L. Ma (Journal of Functional Analysis 241 (2006) 374-382).
متن کاملUniform resolvent estimates for a non-dissipative Helmholtz equation
We study the high frequency limit for a non-dissipative Helmholtz equation. We first prove the absence of eigenvalue on the upper half-plane and close to an energy which satisfies a weak damping assumption on trapped trajectories. Then we generalize to this setting the resolvent estimates of Robert-Tamura and prove the limiting absorption principle. We finally study the semiclassical measures o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2002
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv:2002026